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Abstract—This work proposes a new tensor-based approach
to solve the problem of blind identification of underdetermined
mixtures of complex-valued sources exploiting the cumulant
generating function (CGF) of the observations. We show that
a collection of second-order derivatives of the CGF of the ob-
servations can be stored in a third-order tensor following a
constrained factor (CONFAC) decomposition with known con-
strained structure. In order to increase the diversity, we combine
three derivative types into an extended third-order CONFAC
decomposition. A detailed uniqueness study of this decomposition
is provided, from which easy-to-check sufficient conditions en-
suring the essential uniqueness of the mixing matrix are obtained.
From an algorithmic viewpoint, we develop a CONFAC-based
enhanced line search (CONFAC-ELS) method to be used with
an alternating least squares estimation procedure for accelerated
convergence, and also analyze the numerical complexities of
two CONFAC-based algorithms (namely, CONFAC-ALS and
CONFAC-ELS) in comparison with the Levenberg-Marquardt
(LM)-based algorithm recently derived to solve the same problem.
Simulation results compare the proposed approach with some
higher-order methods. Our results also corroborate the ad-
vantages of the CONFAC-based approach over the competing
LM-based approach in terms of performance and computational
complexity.

Index Terms—Blind identification, complex sources, CONFAC
decomposition, second generating function.

I. INTRODUCTION

LIND identification methods have been successfully
applied in multidisciplinary contexts including radio-
communications, sonar, radar, biomedical signal processing,
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and data analysis, just to mention a few. A widespread class
of these methods relies on independent component analysis
by means of higher-order statistics [1]. This subject has been
at the center of many theoretical works while related methods
and algorithms have been used in a variety of application
fields [2]-[4] (see also [5], [6] for surveys). A problem that has
attracted a particular interest is that of blind identification of un-
derdetermined mixtures. Several solutions have been proposed
in the literature to solve this problem (see, e.g., [6]-[12] and
references therein). The proposed solutions resort to second,
fourth or sixth-order statistics of the observations.

Several solutions to blind identification/source separation
problems have been proposed recently based on multi-way
(tensor) analysis [13]. This is a subject that has gained at-
tention in numerous application areas involving data analysis
such as psychometrics [14], arithmetic complexity [15] and
chemometrics [16], [17]. In this context, canonical polyadic
(CP) decomposition![14], [18] is the most popular tensor
decomposition. The CP decomposition has been successfully
used as an alternative solution to principal component analysis
(PCA) when the available data to be analyzed can be arranged
as a meaningful multi-way array, or a higher-order tensor [13].
Indeed, the widespread use of the CP decomposition can be
attributed to its essential uniqueness property under mild condi-
tions [19]-[25] as well as to the existence of several numerical
algorithms that can be used to compute this decomposition
[16], [26]-[32].

A first class of the so-called tensor-based methods directly
exploits the trilinear nature of the observed data, and the de-
composition of the data tensor provides a direct estimation of
the sources. These methods have been widely applied in wire-
less communications by means of different tensor decomposi-
tions (see e.g., [33]-[38]). However, when the diversity of the
observations is not sufficient, one can resort to a second class
of tensor-based methods that rely on the multilinearity prop-
erties of higher-order statistics (HOS) [8], [29]. A large ma-
jority of these methods solves the blind identification problem
by means of the CP decomposition of a tensor storing the cumu-
lants of the observations [7], [8], [39]-[42]. This is the case, for
instance, of FOOBI/FOOBI2 [11], [12], and BIOME [9] algo-
rithms, which capitalize on the triadic decomposition of fourth-
and sixth-order output cumulants, respectively. The approach
presented in [39] relies on the CP decomposition of third- or

IThis decomposition is sometimes also called Candecomp/Parafac, which can
be referred to with the same acronynm.
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fourth-order cross spectra of the observations. The works [40],
[41], [43], [44] address convolutive mixtures.

A particular class of blind identification methods exploits the
second characteristic function of the observations. This idea
has first appeared in [45] and later in a few works [10], [46],
[47]. In [10], the authors showed that partial derivatives of the
second characteristic function of the observations taken at dif-
ferent points of the observation space can be stored in a sym-
metric tensor, the CP decomposition of which provides a direct
estimation of the mixing matrix up to trivial scaling and per-
mutation indeterminacies. The alternating least squares (ALS)
algorithm is applied to blindly estimate the mixing matrix from
a CP data tensor constructed from third-order derivatives of the
output characteristic function. In a recent work [48], we have
considered a more general scenario where the sources are as-
sumed to be complex-valued (e.g., 4-PSK or 4-QAM), which is
usually the case in digital communications. Therein, the authors
resort to the cumulant generating function (CGF) of the obser-
vations and a Levenberg-Marquardt (LM) based algorithm is
proposed to estimate the mixing matrix.

In this work, we show that the CGF-based blind identifica-
tion problem can be more efficiently addressed by means of the
constrained factor (CONFAC) decomposition [49]. Under the
assumption of complex-valued sources, we show that a collec-
tion of second-order derivatives of the CGFs of the observations
can be stored in a third-order tensor following a third-order
CONFAC decomposition with known constraint matrices.
The profile of 1°s and 0’s of the constraint matrices captures
the linear combination patterns involving real and imaginary
components of the CGFs derivatives. In order to increase the
diversity, we combine three derivative types into an extended
CONFAC decomposition of increased dimensionality. The
uniqueness property of this decomposition is studied and our
results establish a set of easy-to-check sufficient conditions that
guarantee the essential uniqueness of the mixing matrix. From
an algorithmic viewpoint, we develop a CONFAC-based en-
hanced line search (CONFAC-ELS) method to be used with an
alternating least squares (ALS) estimation procedure for accel-
erated convergence. In particular, the numerical complexities
of two CONFAC-based algorithms (namely, CONFAC-ALS
and CONFAC-ELS) is analyzed and compared with the nu-
merical complexity of the Levenberg-Marquardt (LM)-based
algorithm derived in [48](therein called LEMACAFC) to solve
the same problem. Our computer simulation results evaluate
and compare the estimation accuracy of the proposed approach
with those of competing higher-order methods. Our results
also attest the efficiency of CONFAC-based solutions over the
competing LM-based approach proposed in [48].

1) Contributions: The contributions of this paper can be
highlighted as follows:

* In comparison with [48], which does not rely on a tensor
decomposition approach, we originally formulate the
CGF-based blind identification problem in the case of
complex-valued sources as a constrained tensor decom-
position problem with a priori known structure. From a
tensor decomposition perspective, this work is a direct
generalization of [10] to the complex case. In the same
way as the CP decomposition fits the case of real mixture
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of real sources in [10], this work shows that the CONFAC
decomposition fits the case of complex-valued mixtures
of complex-valued sources;

* We provide a detailed uniqueness study of the proposed
CONFAC decomposition. A set of easy-to-check condi-
tions ensuring the essential uniqueness of the mixing ma-
trix is provided, guiding the choice of the number of sen-
sors and number of derivatives points for a given number
of'sources. This is in contrast to [48], where the uniqueness
issue is not addressed and no condition for blind identifia-
bility of the mixing matrix is given;

* Using the fact that second-order derivatives of the CGF ofa
Gaussian noise are constant regardless of the point at which
the derivatives are computed, it is possible to “denoise” the
derivative tensor to be decomposed, yielding more robust-
ness to noise effects;

* We develop an enhanced line search (ELS) optimiza-
tion for the CONFAC-based blind identification method
and a numerical complexity analysis of the so-called
CONFAC-ELS algorithm is provided. This analysis
corroborates the efficiency of the proposed algorithm
compared to the LM-based algorithm of [48].

The distinguishing feature of the proposed second-order
approach is its low complexity compared to higher-order
methods, and its capability to deal with underdetermined mix-
tures without requiring constraints on the temporal structure of
the sources such as correlation [12] and piecewise stationarity
[50]. Additionally, the proposed CONFAC-ELS algorithm is
more computationally efficient than the competing LM-based
algorithm [48], as can be seen from our numerical analysis and
simulation results.

This paper is organized as follows. In Section II, a back-
ground on the CONFAC decomposition of a third-order tensor
is provided. In Section III, we formulate the CGF-based blind
identification problem and present the main core equations. The
problem is recast in Section IV using the proposed CONFAC
decomposition approach. In Section V, a uniqueness study
of the proposed decomposition is provided, from which a set
of easy-to-check conditions ensuring the essential uniqueness
of the mixing matrix is presented. Section VI presents the
CONFAC-ELS blind identification algorithm and discusses
its numerical complexity. Simulation results are given in
Section VII and the paper is concluded in Section VIII.

Notations: In the following, vectors, matrices and tensors are
denoted by lower case boldface (a), upper case boldface (A)
and upper case calligraphic (A) letters respectively. a; is the
i-th coordinate of vector a and a; is the 2-th column of matrix
A. The (i, 7) entry of matrix A is denoted A,; and the (4, j, k)
entry of the third order tensor A is denoted .A; ;. I denotes the
identity matrix of size K. Real and imaginary parts are denoted
R{-} and I{-} respectively. E[.] denotes the expected value of
arandom variable. A7 and A stand, respectively, for the trans-
pose and Moore-Penrose pseudo-inverse of A. det(A) denotes
the determinant of A. The operator vec(A) creates a column
vector ac C/7*! from Ac C'*/ by stacking its ./ columns
below one another, while unvec(a) = A is the inverse operator,
i.e., unvee(vee(A)) = A. The operator D;(A) forms a diag-
onal matrix out of the i-th row of A. The outer vector product
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is denoted by o, while [J denotes the Hadamard (element-wide
product). Kronecker and Khatri-Rao products are denoted by &
and (®, respectively.

II. PRELIMINARIES: THE CONFAC DECOMPOSITION

Let us consider a third-order tensor X& CF*@*E  three
factor matrices A€ CP*F1 Be C@*F: Ce CEXF3 | and
three constraint matrices @c CF1xF We CFBXF Qc CFxF,
The CONFAC decomposition of X with F' factor combinations
is defined in scalar form as:

F Fy Fp Fy
XP(I" = Z Z Z Z AplefIfzO"f&®flf‘ljf2f“(2f3f’
Fo1fim1 faz1 fa—1
with F' > max (Fy, I, Fs) (D

where A, B and C are the factor matrices, while ©, ¥ and 2 are
the constraint matrices. The factor matrices are unknown, to be
determined, while the constraint matrices are known fixed ma-
trices whose structure satisfies the two following assumptions:
A1 The columns of © (resp. ¥ and ) are canonical vec-
tors possibly multiplied by —1. The canonical vectors com-
posing these matrices belong, respectively, to the canon-
ical bases {egFl), . ,e(?)} € R, {egFZ), ey e%?)} €
Rz, and {egFS)7 o eg“)} € R,
A2 0O, ¥ and  are full-row rank matrices with ranks equal
to Iy, Fy, and I, respectively.

The CONFAC decomposition can be stated in a different
manner, which sheds light on a different way of interpreting its
constrained structure. By exchanging summations in (1), we
obtain:

J T - -
Xpgr = Z Z Z ApleQ.fzal’fanlfzfg(67‘1,79)7 (2)
f1=1f2=1 f3=1
where
F
Wflfzfa(eaq’an) = Ze)flf‘ljfoQfo 3)

f=1

is an element of a F; x F5 x F3 tensor W(0O, ¥, ) that fol-
lows an F'-factor triadic decomposition in terms of €, ¥ and ).
We call W(O, ¥, ), or simply W, the constrained core tensor
of the CONFAC decomposition. Due to the structure assumed
from the constraint matrices, ¥V contains 1 elements at fixed
positions. Fig. 1 provides an illustration of the CONFAC de-
composition. Note that the CONFAC decomposition (1) can be
seen as a constrained Tucker3 decomposition [51]-[53] with the
particular characteristic of having a core tensor with known tri-
adic decomposition. Moreover, note that the CONFAC decom-
position for which F; = Fo = F3 = F,and® =¥ = Q =1y
reduces to the F'-factor canonical polyadic (CP) decomposition
[14], [18].

Two different matrix representations of the tensor
Xe CPx@*T are possible, namely the sliced and unfolded
representations. Their construction and factorization follow the
same reasoning as that of the CP decomposition [34]. Thus,
X = BUD, (A@) (CQ)TG C@*E js the factorization

P
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F / Q'f
w =1 Y.,

0,

Fig. 1. Visualization of the CONFAC decomposition of a third-order tensor.

of the p-th slice X,,.. of X& CF*@*E along its first dimen-
sion. Similarly, X.,, = CQD,(B¥)(A6) e C™F and

X., = A®D,(CR) (B\II)TE CF*Q are the factorizations of
its g-th and r-th slices X.,. and X..,., respectively, along its
second and third dimensions.

The full information contained in tensor X& CFP*@xFk
can be organized in three unfolded matrices
X(l) = [X?, - ,X%,,]Te CPQXR, X(g) = [X,{, RN
X% Fe CURXP and X3y = [XT,, ... XTI ]Te CRPXQ,
which admit, respectively, the following factorizations:

X = ((A®) ® (BY)) (CQ)”,
X =((BY) o (CO))(A86)",
X@ = ((CQ) © (A6)) (BE)". @)

The CONFAC decomposition of a third-order tensor was
originally proposed in [49] in the context of wireless com-
munications to design multiple-antenna transmission schemes
with blind detection. Therein, it is shown that the three
CONFAC constraint matrices are design parameters of the
multiple-antenna transmission system. The CONFAC decom-
position also appears in related works [54], [55], where the
constraint matrices of the decomposition are restricted to fixed
linear combination patterns. Uniqueness conditions for the
third-order CONFAC decomposition have been studied in a
recent work [56].

III. PROBLEM FORMULATION

We consider a noisy linear mixture of K narrow-
band sources received by an array of N sensors. Let

H = |[hy,...,hg)e CV*K be the mixing matrix. De-
fine z(m) = [za(m),...,z2x(m)]"e CV, s(m) =
[s1(m),....sx(m)]Te CX and e(m)e CV as the m-th

discrete-time realizations of the observations, source and noise
vectors, respectively, m = 1,..., M. According to this model
we have:

z(m) = Hs(m) + e(m). %)

The sources can be real- or complex-valued and the noise sam-
ples are modeled as zero-mean circularly-symmetric complex-
valued Gaussian random variables.
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The problem consists in estimating H from the only knowl-
edge of the observations. In this work, we are interested in
solving this problem by resorting to partial derivatives of the
CGF of the observations. Specifically, the problem consists in
finding H such that

H = HIIA, (©)
where Il is a permutation matrix and A is a diagonal matrix. This
means that H can be identified up to permutation and scaling of
its columns. Column permutation and scaling ambiguities are
referred to as trivial ambiguities.

The blind identification of the mixing matrix H relies on the
following assumptions:

H1 The matrix H does not contain pairwise collinear
columns;
H2 The sources 1, . . ., . $x are non-Gaussian and mutually
statistically 1ndependent,
H3 The number K of sources is known.
It has been shown in former studies [57], [58] that H is theoret-
ically identifiable under these assumptions.

A. Generating Function of the Observations

We recall from [48] the main steps that formulate the second-
order derivatives of the CGF of the observations in the case
of complex-valued sources. The cumulant generating function
(CGF) of the observations, €., can be decomposed in a sum of
marginal second generating functions of the sources, ¢, £ =
1--- K. We start by defining ¢, and ¢}, in the complex field.
The second generating function ¢, of the k-th source taken at
the point = of C defined R? is given by

pr(R{x}, 3{a})

Similarly, the second generating function ¢, of the observations
taken at the point £ = (u, v) defined in R*¥ can be written as

= log Elexp(R{z"s})]. @)

. (u,v) = log Elexp(xu+y"v)),

where x = R{z} and y = 3{z}. Define A and A as the real
and imaginary parts of the mixing matrix so that H = A +iA.
Next, denote ay(resp. ay,) the k-th column of A (resp. A).

Replacing z by its model and using sources’ mutual statistical
independence hypothesis yields:

G, (u,v) = Z O (uTak +vla,, vlia, — uTék)
k
+&.(u,v), (8

where ®.(u, v) is the corresponding second generating func-
tion of the Gaussian noise. From these definitions, we can
rewrite((8)) as

6= e
k

where g1(§) = 3, Anktin+ Anpvn and go(€) =
A, kty,. Defining

)7 92(6)) +(be(€) (9)

Zn Ank Un —

g: RZN N H2

£ —g(&) = (91(£), 92(8)).
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yields a compact representation for (9) as

= ok (9(8) + . (£). (10)

B. Differentiation of ¢, (€)

Following the approach of [10], [48], we compute partial
derivatives of @, at R different points of R?", denoted here
as é( " = = (u", v+ =1,..., R Recall that areal function
of complex variables is never holomorphic. Consequently, dif-
ferentiations must be taken separately with respect to real and
imaginary parts.

Let {@Z(ﬁ(l)), D, (5(2)), @, (E(R))} be the set containing
the CGFs of the observations evaluated at the R points. Simi-
larly, {®.(61), . (£P),..., ®.(6¥)) denotes the CGFs of
the additive Gaussian noise. Define

Ponlg€)
9g:(€")g;(€")
and note that G}% = Gz,f By successively differentiating (10)
w1th respect to the variable pairs {u”, u{"}, {v{”, v} and

{uq U T) } we can obtain the three different second-order
derivative equations, respectively:

ij def
rk —

(11)

K
X =2 (Apk.Aquii ~ A Ap G
k=1
- ApkAqu»lﬂi + 4p1¢Aqu$z> + Tfp};)v (12)
K
Xpa=3 (ApkAquii + AprAgeGri
k=1
+ Ap AgeGof + ApkAqu%%) +18), (13)
K
X;’IZIST = Z ( PkAqurk + ApkAqu
- Apk Aqu pkAqk Grk) + T,(f;)-, (14)
where
P def BQ(I)Z(ﬁ(T)) q>2 def 9P (§(r))
ar Oug)auff) / O ,(, )dv(s )’
et 020, (87
xg O ), (15)
Juy " Oug
and X ;ﬁ]r is the (p, g, r)-th entry of the s-th “derivative tensor”

X‘Ds of dimensions N x N x R, s = 1, 2,3, while 6 =

2 () (2 _ 2P (6) (3) _ 920 (6!
9 o <r)’Tm = a{,)d(),and“f T oaa0)”

, are the correspondlng second-order derivatives of the
noise term, which follow the same calculation steps as those of
the second-order derivatives of the signal part of the model. We
call attention to the fact that Y1), Y@ and T do not depend
on the index r, since the second-order derivative of the noise is

r =
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constant and not affected by the point at which the derivative
tensor is calculated.

IV. THE CONFAC DECOMPOSITION APPROACH

A. Denoised Formulation of the Tensor Decomposition

We use the fact that the CGFs of a Gaussian noise evalu-
ated at R different points of the observation space have identical
second-order derivatives to eliminate the noise influence from
the derivative tensors in (12), (13) and (14). This is possible
by subtracting from the s-th derivative tensor XZ;I;T the second-
order CGF derivatives evaluated at the origin. More specifically,
the “denoised” derivative tensors are given by

Xq)

S P,
Y =X P

pqr rqr

s=1,2,3, (16)

where X fq‘?, denotes the second-order derivative of the CGF of

the observations evaluated at the origin, i.e., at €”) = 0 in R2V .

Note that X is equal to T{), s =1,2.3, the noise contr1bu—
tion, since the signal part of the CGF derlvatlves vanish at the
origin. Thus, by computing the difference given in (16) allows
one to remove the noise component T,(JZ) so that the resulting

tensor Yp‘f;; will be noise free.

Let AW e RV*2 and GMe REXS | = 1,..., K, be de-
fined as:
[ Ak Ay
AR &) D = law, k),
LAne Ans
[ Gk Gl GRR
def
GW = : : : = [81,k» B2k, B3.k]-
_G}{lk G}%zk: G%%k

Note that two columns of A*) correspond to the real and imag-
inary parts of the &-th column of the mixing matrix, respec-
tively. Each of the three columns of G*) is associated with a
second-order derivative type collected at R points. Using these
definitions, as subsequently shown, we can decompose the de-
noised derivative tensor J’®+, s = 1, 2, 3, as follows:
ISR ( (k) (s)
(I) k) k) k 5
Yogr Z(Z DD D Ay Aqf)Grstflf\Ijﬁfoaf)’

k=1 :1f1:1 fa=1f3=1

Vo (k)

(17
which corresponds to a sum of A CONFAC tensor blocks
Yoa(1),...,Yee(K). The k-th block is given by a sum of
four outer products involving repeated columns of matrices
A®) and G The linear combination pattern involving the
columns of A®*) and G is determined by the joint structure
of ©, ¥ and ). By comparing (17) with the general formu-

lation (1), we can deduce the following correspondences:

(A,B,C) «— (A(k’)yA(kﬁ)ﬂg(k))y
(0,¥.0) < (0,¥ 0,

(F1, Fy, F3, F) < (2,2,3,4),
(P,Q,R) = (N,N,R),
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For each one of the three derivative types, the constraint ma-
trices 6(5), W) and O of the associated CONFAC decom-
position can be identified by comparing respectively (12), (13)
and (14) with (17). A possible choice is given by

1100
oo 1 o1)
(1 0 1 0
‘I"_0101] (18)
(1 0 0 0
oY =10 -1 -1 0
0o 0 o0 1
(0 0 0 1
OP=10 11 o,
100 0
[0 1 0 o0
a®=110 0o -1 (19)
00 -1 0

Note that the first- and second-mode constraint matrices do not
depend on the differentiation variables. This dependence is con-
fined only in the third-mode constraint matrix.

Remark 1: The structures chosen for the constraint matrices
in (18)—(19) are not unique. This can be seen by rewriting (17)
as

K 2 2 3
o, _ (k) 5 (k) ~(R) 11/(5)
Yor =20, D0 2 A A G W L (20)
k=1 f1=1 f2=1 f3=1
where
(s) - (s)
VVflfzfs Z(H)flfllifﬂfnggf' (21
f=1

is a triadic decomposition of W€ C2*2%3_ Even under assump-
tions 47-A2 of Section II, which must be satisfied by ©, ¥
and , there is still freedom to permute their columns and/or
change their signs without changing the constrained core tensor
W) s = 1,2,3. However, these ambiguities are unimpor-
tant in our context since the three constraint matrices are known
by definition. Any structural choice for these matrices that sat-
isfies the decomposition could be adopted. Our choice given
in (18)—(19) is motivated by the convenience of having only
the third-mode constraint matrix changing as the differentiation
variables are changed, while the two first constraint matrices are
fixed. Most importantly, such a choice makes possible to easily
combine the three derivative types into a single CONFAC de-
composition as will be seen in the next section.
Let us define the block matrices

c R]\/_ X2K (22)

., G REXSK (23)

which concatenate the contributions of the K sources. Define
also the block-diagonal constraint matrices

O =TIy @ O c R2EXIK (24)
U =Iyx @ ¥c R (25)
Q(S) —Ix® Q(S)E R3E X4K (26)
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With these definitions, we can treat (17) simply as an block-
CONFAC decomposition composed of A blocks, the £-th block
being associated with the £-th source. In this case, the following
correspondences can be obtained by analogy with (1):

(A,B,C) < (A, A, G),
(0,¥,Q) — (0,F,0"),

(F\, Fy, F3, F) < (2K, 2K, 3K, 4K).
(P,Q,R) < (N,N,R).

The unfolded matrix representations for the second-order
derivative tensor Y®s € RVXN¥N*E ¢ — 1 2 3, follow those

of (4). For instance, the unfolded representation YEI)l) € RV xE
can be written as:
Y A¥D,(AO)
P, . AN T
Yo=| =] o (e
vi | |awna(ae)
= ((A0) & (AD)) (GQY)T 27)

Note that (27) can be viewed as an “augmented” CP decom-
position, where certain columns are repeated in matrix factors
in first and second modes. However, without imposing addi-
tional constraints into this CP decomposition, we would have
to solve a cumbersome combinatorial problem (to associate real
and imaginary parts). The goal of the CONFAC decomposition
is precisely to overcome this difficulty by explicitly parameter-
izing these constraints

B. Combining all Derivatives Into an Extended CONFAC
Decomposition

As shown in (12), (13) and (14), three types of second-order
derivatives can be obtained from the CGF of the observations
depending on the pair of variables with respect to which
the derivatives are computed. Each derivative type yields a
CONFAC decomposition Y®s € RN¥N*XNXT with a different
constrained structure, the structural difference being confined
in the third-mode constraint matrix Q(S) ,s = 1,2,3, as we
have proposed in the previous subsection. In order to increase
diversity, we take all the three types of second-order derivatives
into account by constructing an extended CONFAC decompo-
sition, as follows

$ 1
Yg)
Y
LY ). -
(AB) 0 (AT))(GQ™)

2
= | ((A8) & (AD)) (G*)"

L ((48) & () (G7)"

Yo,

€ RN xR (28)

This unfolded representation can be rewritten as
Yoy = (I ® (AB) & (A®))) (G, (29)
where

Q0= [Q(l)?()@)j)“)} c R3KX12K (30)
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Likewise, we can also stack row-wise the three deriva-
tive types into the second and third unfolded matrices
Y (2)€ R¥NVEXN and Y (5)€ R3EN XN a5 follows

g1
Y
Y.l.

= : (A©)T,

(€2))

and

= . — . (A®)T,

(32

After some algebraic manipulations the unfolded matrices (31)
and (32) can be respectively rewritten in compact form as

Yo = (A% 6 (I3 ® G)Q2)(A6)T, (33)
Y =(Is© G)20 AB)(AD)T, (34)
where
e o
— Q(Z) c RQR X 4K . (35)
ﬂ(3)
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V. UNIQUENESS STUDY

Recall that the goal of the proposed blind identification
problem is to identify the possibly underdetermined mixture
H(up to trivial column permutation and scaling ambiguities)
from the only knowledge of the CGF derivatives of the ob-
servations. Herein, this problem is addressed by exploiting
the uniqueness property of the CONFAC decomposition of
a tensor that combines the three derivative types, as shown
Section I'V-B. In order to study uniqueness, it is convenient to
rewrite the unfolded representation X; as follows:

(Ao A) TW
X, = | (A A)T®
(Ao A) T®
T
GT=LoARA)|T®
T
G'=(I;2 A® A)TGT, (36)
with
T® =[(Ix ®0) & (Ix ® )] (Ix ® Q)T
5s=1,2,3. (37)

The matrices T*) have size 4K 2 x 3K . The matrix (I; ® A ®
A) T has size 3N? x 3K.

The block A of the real-valued mixing matrix A con-
tains the real part a, and imaginary part a; of the k-th
column of the complex-valued N x K mixing matrix H,
ie, H = [a; ... ag] + ¢[a; ... ax]. The mixing matrix
H is called essentially unique if for any alternative H the
relation H = HIIA holds, with IT a K x K permutation
matrix, and A a complex-valued nonsingular diagonal ma-
trix. Multiplying the k-th column of H by « + i yields
(ay — Fay) + i (0 ar + « &;). This motivates the following
definition of essential uniqueness for A.

Definition 1: Matrix A is called essentially unique if for any
alternative F = [Fy | ... |Fg], with each Fy of size N x 2,
there holds
(38)

Fk:A‘IT(k)|:ak /Bk:|7 k=1,....K,

B o

with 7(-) a permutation of {1,. .., K'}, and ar, and /3 not both
zero, k=1,...,K. O

The following theorem is concerned with the uniqueness of
the CONFAC decomposition (36) for K = 1. This result is
conveniently presented here as it will be useful later.

Theorem 1: Let (A, G) be a solution to CONFAC decom-
position (36) with K = 1. Suppose that rank (A) = 2 and
rank (G) = 3. Then A is essentially unique as defined in
Definition 1.

Proof: See Appendix A.

Remark 2: For K > 1, it can be proven that A is essentially
unique if A and G have full column-rank, i.e., rank (A) = 2K
and rank (G) = 3K . Note that, although the full column-rank
condition for A can be restrictive from the view point of blind
identification, the full column-rank of G is likely to hold when
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the number R of points at which the derivatives are evaluated is
large enough.

In the remainder of this section, we do not use the assump-
tion of A having full column rank. Assume instead that (I3 ®
A ® A) T has full column rank 3K (which implies N2 > K).
This assumption, together with G having full column rank 3K,
implies that we may set G = I3x without loss of generality.
A proof of this is analogous to that derived in [56] (cf. Lemma
3.4). We denote alternative component matrices as F(N x 2K)
and L(3K x 3K),withF = [F,| ... |Fg] and F;, = [f¢ | £i].
For G = I3k, equating the CONFAC decomposition (36) to its
alternative yields

Xi=(L0AA)T=LoFeoF)TLT. (39

The goal is now to prove that both decompositions coincide
up to trivial transformations. By assumption, the left-hand side
has rank 3K, and it follows that L is nonsingular and that (I5 ®
F © F) T has full column rank 3K . We write

LARA)TL ' =(I; e FoF)T. (40)
Next, we consider the structure of (I3 © A ® A) T. We have

ﬂA®mew
Y=o A®A)T=| (A A)T®
| (45 A)T® |

(41)

with, fork = 1,.... K,
P = [a, ® ay| — a, ® &, — &, @ ala), © &)
=AW g A(’C))(Q(l))T7
ng) =la, ® agla, @ a + a, ® agla, @ ay]
- (A(k) & A(’C))(Q@))T7
Pﬁ) =la; ® ap|la; ® ar — 8 ® 8| — a; @ ag)
- (A(k) ® A(’f’))(Q(i“))T7

(42)
(43)

(44)

where the matrices © and ¥ have vanished because © W = 1,
from (18). Obviously, the matrix (Iy @ F ® F) T has identical
structure, with A replaced by F. Below, we derive several con-
straints on L implied by the equations above. These constraints
are used to obtain uniqueness results for generic A and specific
values of N and K. Let L=7 = [l; ... 13x]. The structure of
(42)—(44), and (40) imply that

(A A)TWL =(A e AT, (45)
AA) TV =(AoA) TP (46)
(A ATV, = — (A AT, (47)

(A9 A)T®, =(A @ A)TVL — (A AT, (48)
(A® AT, =(A 2 AT, + (A 0 A)T®1;. (49)

These equations can be written as shown in (50) at the bottom
of the next page, where O denotes an N2 x 3K all-zero matrix.
The system (50) should hold not only for (1, 12,13), but for all
(14, 111,1e42),t=3k+1,k=0,1,..., K — 1. The matrix in
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(50) has size 5N? x 9K . Its first three row blocks contain only
columns that are vectorized symmetric N x N matrices. This
yields w(;;l) redundant rows. From (37), it can be verified
that the null space of the matrix in (50) has at least dimension-
ality 3K, and contains the vectors

i 1 20&2 3 T
2 o] — Q3 —(x2
3 —20[2 1
M 1 13) = (51)
Q3K —2 203k -1 Q3K
Q3K -1 OQ3x—2 — X3k —O3K-1
L a3k —2a3x_1 03K —2 |

If the null space of the matrix in (50) is defined by (51),
then 1, and 13 are completely determined if 1; is known.
The same is true for all triplets (1;,1;41,1i42), ¢ = 3k + 1,
k=0,1,....,K - 1.

Next, we derive a second set of constraints on L~7". From the
structure of (42)—(44), it follows that (A® A) T 1, = £, @f;,
A A)TOL =fi,of and (A A)T®L, =f; ®f; are
vectorized rank-1 matrices. This implies that

[unvcc((A ®A) T 1) unvee((A® A) T®) 11)}

unvec((A ® A) T® 1)

and unvec((A ® A) T®) 1) } (52)

both have rank 1, where unvec((A & A)TO)1) =
Adiag(T®™1,)AT, which has size N x N, s = 1,2,3.
This must hold not only for 1; but for all 1;, £ = 3%k + 1,
k=0,1,..., K — 1. The matrices in (52) have rank 1 if and
only if all their second-order minors are zero. We need the
following definition.

Definition 2: Fora P x () matrix X, let the @ X w
matrix m(X) have entries

det (| Fig L
Tih ’

Ljg

with 1<i<j<P and 1<g<h<@Q, (53)

where in each row of m(X) the value of (¢, j) is fixed and in
each column of m{X) the value of (g, ~) is fixed. The columns
of m(X) are ordered such that index g runs slower than /. The
rows of m(X) are ordered such that index 7 runs slower than j.
]

We denote the matrices in (52) as My (11 }(N x 2N) and
Moa(1y) (2N x N). We must have m(M; ) = O and m(M,) =
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m{Mz3) is a homogenous polynomial in ay, . .., a3 of degree
2. We can combine m (M) = O and m(Ms) = O and rewrite
it as the system

(X1(X2

A3 103K
U 2 =0, (54)
aq ’
2
X3
. N(N-1)2N(2N -1 3K (3K+1
where matrix U has YO ZDZVCN-D) owe and %

columns. Each row of U corresponds to a second-order
minor of either M; or My and contains the coefficients of
the associated homogenous second degree polynomial. Since
unvec((A ® A)T® 1) is a symmetric N x N matrix for
s = 1,2,and M; and M, both contain unvec((A®A) T3 1),
the matrix U has some redundant rows due to minors being
identical. In particular, [59] has shown that the number
of nonredundant minors for an N x /N symmetric matrix

(of which the entries are unknown) is not M but

N(N—1)\/ N(N—1) N
(=) - ()
If the null space of the matrix in (50) is given by (51), and

(54) implies that ay; = 0 for all s and ¢ in different triplets
{1,2,3},...,{3K — 2,3K — 1,3K}, then the linear combi-
nations forming a block F. of the alternative solution involve
only one block of A.. The nonsingularity of L~ implies that the
block-to-block correspondence between F and A is a permuta-
tion. Hence, the question of essential uniqueness of A reduces
to the question of essential uniqueness for K = 1 block only,
which is ensured by Theorem 1.

1) Uniqueness Checking Procedure: Below, we use the con-
straints (50) and (54) to check uniqueness for generic A and
several values of N and K. An outline of our procedure is as
follows.

1) Check if rank ((Is ® A ® A) T) = 3K and rank (G) =

3K.

2) Check if the null space of the matrix in (50) is defined by
(51).

3) Check if the null space of U in (54) implies that aior, = 0
for all s and ¢ in different triplets {1,2,3},...,{3K —
2,3K — 1,3K}.

As stated above, matrix A is essentially unique if steps 1, 2, and
3 hold. This procedure for checking uniqueness can be easily
performed by a numerical computational routine. Examples of
some values of (N, K') for which A is essentially unique are:

O.Letl; = (a1 ... aszx)?. Then each entry of m(M;) and (N,K) = (3,2),(3,3),(4,3), (4.4),(5,4),(4,5),(5,5), (5,6).
(A®A)TW 0 ~(A®A)T®
(A®A)T® 0 (Ao ATV | /(1
o (A ®A) (T + T3 ¢} I, | =0, (50)
(A @A) (TW - T®) —(A®A)T® 0 13
(A®A)T® —(A®A)T® —(A®A)T®
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Note that our uniqueness checking procedure works for
K > N. It worth noting that these conditions are sufficient but
not necessary. This means that uniqueness may exist for other
underdetermined cases where our conditions are not verified, as
it will be pointed out in our simulations. The development of a
more general uniqueness result is currently under investigation.

VI. BLIND IDENTIFICATION ALGORITHM

Computation of formal CGF partial derivatives and the
construction of the derivative tensors are largely detailed in
Section IV-A of [48]. The estimated noise contribution is re-
moved as explained in (16). The algorithm used to estimate the
mixing matrix is based on the alternating least squares (ALS)
procedure [51]. In our case, the algorithm uses the unfolded
representations (29), (33) and (34) to alternates between the
estimation of the factor matrices A and G of the extended
CONFAC decomposition. For avoiding the very slow conver-
gence behavior that is typical in the traditional ALS algorithm
[51], we propose the use of an enhanced line search (ELS) [30]
to be used in conjunction with the ALS steps for accelerating
the convergence of the estimates. Exact line search consists
of searching the global minimum along a fixed direction. Of
course, this procedure can be traced back to the origins of
numerical optimization, and in particular to univariate global
minimization; see e.g., [60] and references therein. However,
the first application to CP decomposition appears in the thesis
of Franc [61]. Various implementations of this idea can then
be found in the literature, including [62] and [30]. In the latter
reference, the chosen implementation is called Enhanced Line
Search (ELS). Herein, we derive an ELS implementation of the
CONFAC decomposition.

Let A0 B and G (™ be the estimated matrices computed
at the n-th ALS iteration. The directions A7, A" and ALY
are defined by:

AE:) :A(n) _ i&(n—l)7 (55)
Al =B B, (56)
Al =g gD, (57)

The ELS method consists in finding an optimal step-size pa-

rameter f to predict the estimated matrices AgL) S BgL) s and

G(;Iz g such that

AL = A 4 Al (58)
B =B 4 Al (59)
GU =G 4 Al (60)

The optimization method searches for the best x that leads to
the global minimum of

HY(I) — (13 & ((A("fl) + /LAEP)@

o(BU Y 4paf)8) )2 (G 0Tl )| e

which is a polynomial of degree six in z given by cu® +c5p® +
capr +cap® + cop? + et + ¢o. The mathematical expressions
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of the polynomial coefficients are provided in Appendix B. In
practice, ELS step-size can be executed every P iterations in
order to spare some computations, where P is called the ELS
period. Therefore, CONFAC-ALS corresponds CONFAC-ELS
with P = 0. The CONFAC-ELS algorithm is summarized in Al-
gorithm 1. After convergence, the final estimate H of the com-
plex-valued mixing matrix is obtained by combining real and

imaginary parts of the estimated A.

Algorithm 1: Summary of the CONFAC-ELS Estimation
Algorithm

1:Define a maximal number of iterations or any other stopping
criterion;

2:Define an ELS period FP;

3:Choose R differentiation points;

4:for s = 1to 3 do

5:Compute the denoised derivative tensors Y, Y®2 ¥,
6:Deduce the unfolded matrix YEIB ,
7:end for

8:Construct Y(l), Y(g) and Y(3) as defined in (28), (31), and
(32), respectively;

9:Construct matrices ¥, ©, Q and fl;

10:Initialize randomly A, B and G;

11:while Stopping criterion is not verified do

12:ALS steps:

13:Save previous matrices A, B and G;

(BY om0’

Y23

T
Y(3);

14:Update AT =

15:Update BT

[((Ig 2GR e Aé)\ixT}

_ N o
16:Update GT = [(13 ® (A® © B¥))Q } Y (1)
17:if current iteration number is a multiple of P then
18:ELS steps:

19:Calculate the three directions A4, Ap and Ag using
(55)—(57) and the common step-size parameter ;. to obtain new
estimates of A, B and G using (58)—(60), respectively;

20:end if

21:end while

22:5 = 1;2

23:for k = 1 to K do
24:Compute hy, = a; +iaj41;
25 =73+ 2;

26:end for

Our simulation experiments have shown that, whenever the
mixing matrix is accurately estimated, the difference between
the estimated A and B at the end of Algorithm 1 is negligible,
so that both matrices yield a good estimate of the mixing ma-
trix. Conversely, we have observed that the difference between
both estimated matrices becomes more important when the es-
timation error of the mixing matrix increases. This means that
the distance between these matrices serves as an indicator of the
quality of the estimation.
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A. Numerical Complexity

We now discuss the numerical complexity of CONFAC-ELS
algorithm, in terms of the number C of multiplications, with
respect to the numbers of sources (K ), sensors (V), samples
(M), differentiation points ( R) and iterations (). For compar-
ison purposes, we also give the numerical complexities of the
standard CONFAC-ALS algorithm (i.e., without ELS) and that
of the Levenberg-Marquardt (LM)-based algorithm derived in
[48](therein called LEMACAFC-2) to solve the same problem.
First, note that building the tensor of derivatives is common to
all algorithms and it costs (3(4M +4)N? + N M) R multiplica-
tions. Therefore, this contribution to the overall cost is neglected
in the following analysis.

One CONFAC-ALS iteration consists of building three ma-
trices Ky = (BT © (I, ® G)2)0" , K = (I3 2 )N ©
A®) ¥ andKg = (I;©(AO0BY)) Q" and solving overde-
termined linear systems(see lines 14—16 of Algorithm 1). Note
that the later step is done by means of a QR factorization so that
one actually solves complete triangular systems. Building K 4
and K g each costs approximately 2K 2(108+24 N ) multiplica-
tions. Estimations of A and B are dominated by a QR factoriza-
tion and each one of them costs approximately 12K 2N R mul-
tiplications. Building K¢ costs approximately 124K 2N multi-
plications. The QR factorization costs approximately 27 K2 N2
multiplications, whereas solving the 9 R triangular systems costs
9RK? additional multiplications. After few simplifications, we
have:

CooNFaC-aLs = T2RK?(3 + N)Iconrac-aLs.  (62)

When CONFAC-ELS is used, each ELS iteration adds the
computation of the optimal step, which costs approximatively
45N2K R+ 1752K* additional multiplications. Assuming that
the optimal step is computed every P iterations, we obtain:

COONFAC—ELS ™ (72RK2(3 + N)

A5N?K R+ 1752K3 )
+ P

X IcoNFAC—ELS- (63)

Each iteration of LEMACAFC-2 is dominated by the
construction of the Jacobian matrix and a QR factoriza-
tion, which cost 3RN2(8N? + 8KN(N — 1) + 4K) and
3R((2N + 3R)K N)? multiplications, respectively. In prac-
tice, N and K are negligible in comparison to M and R.
Thereby,

CLEM ~ 27R3K2N2_ILE_\,[. (64)

Fig. 2 compares the convergence speed of the three algo-
rithms (LEMACAFC-2, CONFAC-ALS, and CONFAC-ELS)
in terms of the number of multiplications. We have chosen a
representative case: 3 sensors, 4 sources, 5000 samples and 100
differentiation points. The signal-to-noise ratio (SNR) is set to
20 dB and ELS is run every 4 iterations of CONFAC-ELS.
Plotted lines are median plots of the reconstruction error of the
data tensors obtained from 100 Monte Carlo runs. These results
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Fig. 2. Median convergence plot of CONFAC-ALS, CONFAC-ELS and
LEMACAFC-2 with respect to the number of multiplications.

highlight the efficiency of the CONFAC approach compared to
the LEMACAFC one. This is especially true when one wants
to use a lot of differentiation points in order to improve the
estimation of the mixing matrix. One could think from theses
plots that ELS is not so efficient. Actually, a closer look shows
that CONFAC-ALS requires about 3.4 times more multiplica-
tions than CONFAC-ELS to stop. In addition the median NMSE
value obtained with CONFAC-ALS is 7.3 10~2 whereas it is
3.7 1073 with CONFAC-ELS.

VII. SIMULATION RESULTS

The performance of our blind algorithm is evaluated ac-
cording to the normalized mean square estimation error(NMSE)
of the mixing matrix estimation:

vee(H — H)  vec(H — H)
vee(H)T vee(H) ’

fu(H,H) =

where the permutation and scaling ambiguities present in H are
fixed in the same manner as in [29]. Estimation precision relies
upon several parameters such as the number of sources for a
given number of sensors(under-determinacy level), number of
samples, and SNR. Their respective influences are evaluated by
means of Monte Carlo runs. Hence, our comparison criterion
is the median value of the NMSE computed from 100 of these
runs. At each run, the sources, mixture, noise and initialization
conditions are randomly drawn. Mixture and noise entries are
drawn from a Gaussian distribution. Sources are synthesized
4-PSK or 8-PSK signals.

We compare performances of the CONFAC-ELS algorithm
with those of FOOBI(Fourth Order Only Blind Identification)
and BIRTH(Blind Identification of mixtures of sources using
Redundancies in the daTa Hexacovariance matrix, also referred
to as 6-BIOME). Both FOOBI and 6-BIOME are reference
higher-order statistics based algorithms that rely, respectively,
on fourth and sixth-order cumulants of the observations. The
tolerance of the joint diagonalization procedure in 6-BIOME
and FOOBI is set to 1078, CONFAC-ELS is stopped when
the absolute difference between two consecutive values of
the cost function is less than 107!° or when the iteration
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Fig. 3. NMSE vs. SNR in the 4PSK-4-3-20000 case.

number reaches 1000. We used 200 differentiation points in the
CONFAC-ELS algorithm, and ELS period is set to 4. ALS/ELS
is sensitive to parameter initialization. Thereby in the most dif-
ficult situations, three random starting points were compared,
and the one leading to the smallest value of the cost function
after few iterations was kept. The problem of choosing optimal
differentiation points in the CONFAC-ELS procedure has not
been theoretically investigated yet. However in practice, we
obtained best results by randomly drawing the points in the
ranges [—10; 10]Y for SNR values greater than or equal to 20
dB and [—1; 1] for lower SNR values.

A lot of situations involving complex-valued mixtures for
different sources alphabets and different numbers of sensors,
sources and samples have been investigated. Obviously higher-
order algorithms allow to deal with more tricky situations such
as low SNR and high under-determinacy levels. Nevertheless,
we have retained here six scenarios which highlight some strong
points of the CONFAC-ELS algorithm. Results are given ac-
cording to the SNR level in the 5-40 dB range.

We first consider three cases of complex-valued mixtures of
4-PSK sources. The first one involves 4 sources, 3 sensors, and
20000 samples. In the following, let us denote this kind of con-
figuration as the “4PSK-4-3-20000” case. Results are plotted
in Fig. 3. In this situation, the SNR range is clearly split into
two regions around a critical value: CONFAC-ELS outperforms
the two higher-order algorithms for SNR values above 15 dB
whereas under this value all algorithms exhibit similar perfor-
mances. For the second experiment, 4PSK-6-4-50000 case, we
increase the underdeterminacy level and the number of samples.
The results are depicted in Fig. 4. One can observe the same
global behavior than in the previous experiment except that the
critical SNR value is now 20 dB. For the last experiment in-
volving 4-PSK sources, the 4PSK-5-3-5000 case, we still in-
crease the underdeterminacy level but this time we strongly de-
crease the number of samples. Fig. 5 shows that, as in the first
experiment, CONFAC-ELS clearly provides better results than
the higher-order algorithms for SNR values above 15 dB. How-
ever the situation is upturned for 5 dB and 10 dB.

In the following experiments, 4-PSK sources are replaced
by 8-PSK sources. Hence, the fourth experiment considers
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Fig. 5. NMSE vs. SNR in the 4PSK-5-3-5000 case.
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Fig. 6. NMSE vs. SNR in the 8PSK-4-3-10000 case.

8PSK-4-3-10000 case, while in the fifth experiment, we in-
crease the underdeterminacy level and the number of samples,
by considering the 8PSK-5-4-10000 case. The results are
plotted in Figs. 6 and 7, respectively. Both scenarios show
degraded performances of FOOBI and 6-BIOME in compar-
ison to the previous experiments involving 4-PSK sources.
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Fig. 7. NMSE vs. SNR in the 8PSK-5-4-10000 case.
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Fig. 8. NMSE vs. SNR in the 8PSK-4-3-2000 case.

Conversely, CONFAC-ELS is consistent and provides the best
results in the whole SNR range. These results highlight the
stability of the proposed algorithm.

In our last experiment, we consider the 8PSK-4-3-2000 case.
This is another challenging configuration where a small number
of samples are used. Fig. 8 points out the same behavior than the
two previous experiments, where CONFAC-ELS outperforms
FOOBI and 6-BIOME in all the considered SNR range. Note
that, in this case, more satisfying results are obtained for higher
SNRs.

It is worth noting that, although the underdetermined cases
(N,K) = (3,4),(3,5) and (4,6) considered in this section
cannot be proven to be unique from the checking procedure of
Section V, no problem with non-uniqueness was encountered
in our simulations. As we have mentioned in Section V, the
generalization of our uniqueness checking procedure is still an
open point that deserves further investigation.

VIII. CONCLUSION

We have proposed a second-order method for the blind
identification of underdetermined mixtures of complex-valued
sources that relies on a CONFAC decomposition approach.
The distinguishing feature of the proposed approach is its
low complexity compared to higher-order methods and its
capability to deal with underdetermined mixtures without

5709

requiring constraints on the temporal structure of the sources
(such as correlation and nonstationarity), as in previously
reported second-order methods. The possibility of canceling
out the noise influence from the second-order CGF derivatives
of the observations makes the proposed method robust to
noise. Our uniqueness study resulted in a set of easy-to-check
sufficient conditions that guarantee the essential uniqueness
of the mixing matrix. According to our numerical results,
our second-order CONFAC-ELS algorithm is fast and able to
surpass higher-order algorithms in various typical situations
involving underdetermined mixtures. This is especially true
for SNR values above 15 dB or in the case of 8-PSK sources.
Obviously, the price to pay is that the underdeterminacy level
has to be quite low while higher-order algorithms are less
sensitive to this limitation. Finally, in comparison with the
LEMACAF C approach of [48], the CONFAC approach is less
time-consuming and allows to deal with more sources for a
given number of sensors. We conjecture that even better results
would be obtained by extending the CONFAC approach to the
case of third-order CGFs derivative, so that higher underdeter-
minacy levels could be handled at the cost of an increase in the
numerical complexity.

APPENDIX A

Proof of Theorem 1: For K = 1, the CONFAC decompo-
sitions of the second-order derivative tensors Y(*)e CNXNVx &
s = 1,2,3, can be expanded as a sum of rank-1 terms as fol-
lows:

y —aocaog —aoaogs

—aoaogytaocaocgs, (65)
Y® —acaogs+aoaocg,

+acaogyt+aocaog, (66)
ye —aocaogy +aocaog

—aoaogy—aocaocg. 67)

Let (F,L) denote an alternative solution for (A, G). The
uniqueness properties of A and G do not change if we premul-
tiply by nonsingular matrices. Since both A and G have full

12] and G = {13

o o } without

column rank, we may set A = [

loss of generality.
In the sequel, we will use the following result:
Lemma 1:
(i) The matrix ((Ix @ ¥)© (Ix © Q")) (Ix )7 has full
column rank, s = 1,2, 3,
(ii) The matrix T(*) has full column rank, s = 1,2, 3,
(iii) The matrix (Ix ® Q) ® (I ©0)) (Ix © ¥)7 has full
column rank, s = 1,2, 3.
Proof: First, we prove (i). We have

Ix @ (¥ o)

(Ix ®¥) & (Ix @ QW) =1I { o

] » (68)
for some permutation matrix II. Hence,

((Ix 2 W) o (Ix Q) (Ix © 6)"
1 [IK 2 (T o6’

o ] . (69)
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This implies that (T © @) ® (L @ Q) (Ix © ©)7 has full
column rank if and only if (¥ ® 2*))®” has full column rank.
The latter can be verified for s = 1,2, 3.

The proofs of (ii) and (#i) are completely analogous. We
use the fact that (@ ® ) ()7 and (2 ® ©) ¥7 have full
column rank, respectively, for s = 1,2, 3. This completes the
proof. ]

Using Lemma 1 for K = 1, together with the result of [56]
(cf. Lemma 3.4, applied to one of the three decompositions),
implies that the last N — 2 rows of F and the last R — 3 rows of
L are all zero. Hence, the uniqueness properties depend only on
the nonzero rows of A and G. Without loss of generality we set
A =1T1; and G = I3. The decompositions (65)—(67) then have
size 2 X 2 x 3 and frontal matrix slices

(1 0 0 -1 0 0]

0 0 -1 0 0 1]’

[0 0 0 1 1 0

0 1 10 0 ol

(0 1 1 0 0 0]

0 0 0 -1 ‘ -1 0] (70)

It follows from [56] (c.f Proposition 3.3, applied to one of
the three decomposition) that F (2 x 2) and L(3 x 3) are non-
singular. Next, we write out the equations of the three decompo-
sitions. Let M = F !, Equating the original CONFAC solution
to its alternative yields the following equations for each of the
three frontal slices in the three CONFAC decompositions:

ln =l 10 T
I B
2
__[ miy Whlgwl] 1)
mi11MmM21 maq

121 7l22 _ 0 -1 T
ol R L
—21ny1 Mg

—Tre1y Tnes —1Mmay Mg :|

|: —Tr1q oo —Tay e —2moy Mmoo

(72)
I31 —l32] _ 0 041
{—132 s |- Mo 1M
77’1,2‘ 112 Thos
_ |: 12 77712;7722 (73)
mi2 Moo Mmoo
ha hal| 0 0 T
|:112 111 =M 0 1 M
2 , ,
— |: NLl12 HLllg 2"L22:| (74)
T2 Moo oo

lag a2 | _ 0 1T
=Ml o)

2y ma2 iy mige ey Mo :|

|:’"111 mos ey M 2 moy Moy

(75)

I3z lao| 10| g7
[132 zJ‘M{o o]M
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(76)

mi 777/21]

_ mi !
mi1mM21 myy

M0 Lmr
Mg o] n

11 M2
o1 112

{ l12 l11 }
=13 —ho

Tri11 Moo :| (77)

Troq oo

10,1
0 —1}M

2 2
[ T T

M1l Mal —M12 Ma2

I22 l21
=M
{—123 —122} {

™11 M1 —M12 Moy
2 2
My Mg

(78)

[ I3n a1

=] 0]a
—l33  —lso

-1 0
_ [—mn mi2

(79)

—mi1 Moz —Ma21 M2

—Mmi12 M21 ]

Here, (71)—(73) correspond to the first decomposition (65),
(74)—~(76) correspond to the second decomposition (66), and
(77)=(79) correspond to the third decomposition (67). We
should find nonsingular M and L satisfying (71)—(79). For
each entry of L, we have three expressions in terms of entries
of M. Equating each triplet of expressions yields 18 equations.
Additionally, (77)—(79) give two expressions for l12, /22,32,
which yields another three equations. All equations together
are as follows:

ML = mae =My Mmoo (80)
—T11 Mo = M2 Moy = 1111 M2
= — M9 M3, (81)
m%l = m%Q = — Moy M2, (82)
—2m11 M1 = 2101 Mag = M1 M2
— M12 M2, (83)
11 1Moo + Trig1 M2 = m%l - ’HL§2
=m3y — M3, (84)
—2mo91 Mo = 2111 M1 = M12 92
— mM11M21, (85)
miy = mi = — miamo , (86)
— 12 Moo = M1 M1 = — M1 M2
=1n91 Maa , (87)
m§2 = m%l =111 Moo . (88)

Suppose 11 = 0. Then mes = 0 follows from (80), and
meo1 m12 7 0 follows from the nonsingularity of M. Then (82)

implies mio = —me1, and all equations are satisfied. Next,
suppose m11 # 0. Then mi; = mas follows from (80), and
mi12 = —me1 follows from (81). Again, all equations are satis-
fied. We have
_[a -8
M = Lﬁ o ] ’
_ng=1 2 a2y—1 a f
F=M""=(a"+73%) [—ﬂ a} , (89)
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with « and § not both zero. Hence, for K = 1, the mixing
matrix A = [a]a] allows only alternatives of the form F =
[xa—ga|fa+ aal. O

APPENDIX B

We present the mathematical expressions for the coefficients
of the sixth-degree polynomial cgu® + csp® + cap + c3p® +
capt? + e put + co used in the calculation of the CONFAC-ELS
step. Note that g is not useful for the optimization.

Define A = A®-18, B

Ap = AT, o = Q. x; =X,P=A,0B+A0Ap,
Q = Ac¢ B,R: A_;@AB,Sl = ATAEBTB,
S, = ATAE (BTAp + ALB ) S; = ATA G ALAg,

2
—
=
H
B>
b
+
>
w3
b
~——
L
]
sl
-
®

:=ALA, OB B,Ss = AA, O (BTAB +ALB )

Sg = AiAA EAEAB, S10 =82+ 854,811 =83+ S5+ Sr,
S12 = Sg + Sg. Then, we have:

a=-2x{ (GOLYP+AcoI; 2 Q)@
+aot (2 (AE;G) LS+ (G'G)eI;® 310)‘1’7
co=-2x] (GRI; e R+ A L; o P)@
+(‘~)T (2 (AgG) ®1I3& S19 + <A£Ag) ® I3 8
+(G'G)eL;® S11>517
3= —2x; (Ag@I; o R)w
LT (2 (AEG) ®I;®8S; + (AEAG) ®I3® Sqg
+(G'G)eL;® Sl2>“~Ja
_ 1. T
Ch=w (2 (AGG) ® I3 ® S1
+ (AEAG) ® I3 ®Sn
+(G'G) ®I; ®Sg)da
s =’ (2 (AEG) @ I3 @ Sy
+ (AgAg) ®I;® 512)437

=@t ((AEAG) 9l ® Sg) @.

ACKNOWLEDGMENT

The authors would like to thank Laurent Albera and Carlos
E. R. Fernandes for having provided us the Matlab codes of
6-BIOME and FOOBI algorithms, respectively. They also thank
Arie Yeredor for his suggestions that helped improving the per-
formance of the proposed method.

5711

REFERENCES

[1] P. Comon, “Independent component analysis,” in Higher Order Statis-
tics, J. Lacoume, Ed. Amsterdam, The Netherlands: Elsevier, 1992,
pp. 29-38.

[2] F. Asano, S. Ikeda, M. Ogawa, H. Asoh, and N. Kitawaki, “Combined
approach of array processing and independent component analysis
for blind separation of acoustic signals,” IEEE Trans. Speech Audio
Process., vol. 11, no. 3, pp. 204-215, 2003.

[3] A.Kachenoura, L. Albera, L. Senhadji, and P. Comon, “ICA: A poten-
tial tool for BCI systems,” IEEE Signal Process. Mag., Special Issue
on Brain-Computer Interfaces, vol. 25, no. 3, pp. 57-68, 2008.

[4] L. De Lathauwer, D. Callaerts, B. De Moor, and J. Vandewalle, “Fetal
electrocardiogram extraction by source subspace separation,” in Proc.
IEEE Workshop Higher Order Statistics, Girona, Spain, 1995, pp.
134-138.

[5] A. Cichocki and S.-1. Amari, Adaptive Blind Signal and Image Pro-
cessing. New York: Wiley, 2002.

[6] P. Comon and C. Jutten, Handbook of Blind Source Separation, In-
dependent Component Analysis and Applications. New York: Aca-
demic, 2010.

[7] J.F. Cardoso, “Super-symmetric decomposition of the fourth-order cu-
mulant tensor. Blind identification of more sources than sensors,” in
Proc. ICASSP 91, Toronto, 1991, pp. 3109-3112.

[8] P. Comon, “Blind identification and source separation in 2x3 under-
determined mixtures,” [EEE Trans. Signal Process., vol. 52, pp. 11-22,
Jan. 2004.

[9] L. Albera, A. Ferreol, P. Comon, and P. Chevalier, “Blind identification
of overcomplete mixtures of sources (BIOME),” Linear Algebra Appl.,
vol. 391, pp. 1-30, Nov. 2004.

[10] P. Comon and M. Rajih, “Blind identification of under-determined
mixtures based on the characteristic function,” Signal Processing, vol.
86, no. 9, pp. 2271-2281, 2006.

[11] L. De Lathauwer, J. Castaing, and J.-F. Cardoso, “Fourth-order cu-
mulant-based blind identification of underdetermined mixtures,” IEEE
Trans. Signal Process., vol. 55, no. 2, pp. 2965-2973, Feb. 2007.

[12] L. De Lathauwer and J. Castaing, “Blind identification of underdeter-
mined mixtures by simultaneous matrix diagonalization,” IEEE Trans.
Signal Process., vol. 56, no. 3, pp. 1096—1105, Mar. 2008.

[13] A. Smilde, R. Bro, and P. Geladi, Multi-Way Analysis. New York:
Wiley, 2004.

[14] J. D. Carroll and J. J. Chang, “Analysis of individual differences in
multidimensional scaling via N-way generalization of Eckart-Young
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283-319, 1970.

[15] P.Biirgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity
Theory. New York: Springer, 1997, vol. 315.

[16] R. Bro, “PARAFAC, tutorial and applications,” Chemom. Intel. Lab.
Syst., vol. 38, pp. 149-171, 1997.

[17] C. A. Stedmon, S. Markager, and R. Bro, “Tracing dissolved organic
matter in aquatic environments using a new approach to fluorescence
spectroscopy,” Marine Chem., vol. 82, no. 3—4, pp. 239-254, 2003.

[18] R. A. Harshman, “Foundations of the Parafac procedure: Models and
conditions for an explanatory multimodal factor analysis,” UCLA
Working Papers in Phonetics, vol. 16, pp. 1-84, 1970.

[19] R. A. Harshman, “Determination and proof of minimum uniqueness
conditions for PARAFAC-1,” UCLA Working Papers in Phonetics, vol.
22, pp. 111-117, 1972.

[20] J. B. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear de-
compositions,” Linear Algebra Appl., vol. 18, pp. 95-138, 1977.

[21] J. M. F. Ten Berge and N. D. Sidiropoulos, “On uniqueness in CAN-
DECOMP/PARAFAC,” Psychometrika, vol. 67, pp. 399—409, 2002.

[22] T.Jiangand N. D. Sidiropoulos, “Kruskal’s permutation lemma and the
identification of CANDECOMP/PARAFAC and bilinear models with
constant modulus constraints,” /EEE Trans. Signal Process., vol. 52,
no. 9, pp. 2625-2636, 2004.

[23] L. De Lathauwer, “A link between canonical decomposition in multi-
linear algebra and simultaneous matrix diagonalization,” SIAM J. Ma-
trix Anal. Appl., vol. 28, no. 3, pp. 642-666, 2006.

[24] A. Stegeman and N. D. Sidiropoulos, “On Kruskal’s uniqueness condi-
tion for the Candecomp/Parafac decomposition,” Linear Algebra Ap-
plic., vol. 420, pp. 540-552, 2007.

[25] A. Stegeman, “On uniqueness of the n-th order tensor decomposition
into rank-1 terms with linear independence in one mode,” SIAM J. Ma-
trix Anal. Appl., vol. 420, pp. 540-552, 2007.



5712

[26] P. Paatero, “The multilinear engine: A table-driven, least squares pro-
gram for solving multilinear problems, including the n-way parallel
factor analysis model,” J. Comput. Graph. Stat., vol. 8, no. 4, pp.
854888, Dec. 1999.

[27] L. De Lathauwer, B. De Moor, and J. Vandewalle, “Computation of
the canonical decomposition by means of a simultaneous generalized
schur decomposition,” SIAM J. Matrix Anal. Appl., vol. 26, no. 2, pp.
295-327, 2004.

[28] G. Tomasi and R. Bro, “A comparison of algorithms for fitting the
parafac model,” Comp. Stat. Data Anal., vol. 50, pp. 1700-1734, 2006.

[29] P. Comon, X. Luciani, and A. L. F. de Almeida, “Tensor decomposi-
tions, alternating least squares and other tales,” J. Chemometrics, vol.
23, no. 9, pp. 393—405, Sep. 2009.

[30] M.Rajih, P. Comon, and R. Harshman, “Enhanced line search : A novel
method to accelerate PARAFAC,” SIAM J. Matrix Anal. Appl., vol. 30,
no. 3, pp. 1148-1171, 2008.

[31] D. Nion and L. De Lathauwer, “An enhanced line search scheme for
complex-valued tensor decompositions. Application in DS-CDMA,”
Signal Process., vol. 88, no. 3, pp. 749755, 2008.

[32] E. Acar, D. M. Dunlavy, and T. G. Kolda, “A scalable optimization ap-
proach for fitting canonical tensor decompositions,” J. Chemometrics,
vol. 25, no. 2, pp. 67-86, Feb. 2011.

[33] N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, “Parallel factor anal-
ysis in sensor array processing,” [EEE Trans. Signal Process., vol. 48,
no. 8, pp. 2377-2388, Aug. 2000.

[34] N. D. Sidiropoulos, G. B. Giannakis, and R. Bro, “Blind PARAFAC
receivers for DS-CDMA systems,” Trans. Signal Process., vol. 48, no.
3, pp. 810-823, 2000.

[35] A.L.F.de Almeida, G. Favier, and J. C. M. Mota, “PARAFAC-based
unified tensor modeling for wireless communication systems with ap-
plication to blind multiuser equalization,” Signal Process., vol. 87, no.
2, pp. 337-351, 2007.

[36] A.L.F.de Almeida, “Tensor modeling and signal processing for wire-
less communication systems,” Ph.D. dissertation, Univ. of Nice-Sophia
Antipolis, Sophia Antipolis, France, 2007.

[37] L. De Lathauwer and A. de Baynast, “Blind deconvolution of
DS-CDMA signals by means of decomposition in rank-(1,L,L)
terms,” I[EEE Trans. Signal Process., vol. 56, no. 4, pp. 1562-1571,
Nov. 2008.

[38] D.Nion and L. De Lathauwer, “A block component model-based blind
DS-CDMA receiver,” IEEE Trans. Signal Process., vol. 56, no. 11, pp.
5567-5579, Nov. 2008.

[39] T. Acar, Y. Yuanning, and A. P. Petropulu, “Blind MIMO system es-
timation based on PARAFAC decomposition of higher order output
tensors,” [EEE Trans. Signal Process., vol. 54, no. 11, pp. 4156-4168,
2006.

[40] C.E.R. Fernandes, G. Favier, and J. C. M. Mota, “Blind channel iden-
tification algorithms based on the PARAFAC decomposition of cumu-
lant tensors: The single and multiuser cases,” Signal Process., vol. 88,
no. 6, pp. 1382-1401, 2008.

[41] Y. Yuanning and A. P. Petropulu, “PARAFAC-based blind estima-
tion of possibly underdetermined convolutive MIMO systems,” IEEE
Trans. Signal Process., vol. 56, no. 1, pp. 111-124, 2008.

[42] A.L.F. de Almeida, X. Luciani, and P. Comon, “Blind identification
of underdetermined mixtures based on the hexacovariance and higher-
order cyclostationarity,” in Proc. SSP’09, Cardift, 2009, pp. 669—672.

[43] B. Chen and A. P. Petropulu, “Frequency domain blind MIMO system
identification based on second and higher order statistics,” /EEE Trans.
Signal Process., vol. 49, no. 8, pp. 1677-1688, Aug. 2001.

[44] D. Nion, K. Mokios, N. D. Sidiropoulos, and A. Potamianos, “Batch
and adaptive PARAFAC-based blind separation of convolutive speech
mixtures,” IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 6,
pp. 1193-1207, Aug. 2010.

[45] A. Yeredor, “Blind source separation via the second characteristic func-
tion,” Signal Process., vol. 80, no. 5, pp. 897-902, 2000.

[46] A. Taleb, “An algorithm for the blind identification of » independent
signals with 2 sensors,” in Proc. ISSPA°01, Kuala Lumpur, 2001, vol.
1, pp. 5-8.

[47] P. Comon and M. Rajih, “Blind identification of complex underdeter-
mined mixtures,” in Proc. ICA Conf., Granada, 2004, pp. 105-112.

[48] X. Luciani, A. L. F. de Almeida, and P. Comon, “Blind identification
of underdetermined mixtures based on the characteristic function: the
complex case,” Trans. Signal Process., vol. 59, no. 2, pp. 540-553,
2011.

[49] A. L. F. de Almeida, G. Favier, and J. C. M. Mota, “A constrained
factor decomposition with application to MIMO antenna systems,”
IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2429-2442, Jun. 2008.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 11, NOVEMBER 2012

[50] P. Tichavsky and Z. Koldovsky, “Weight adjusted tensor method
for blind separation of underdetermined mixtures of nonstationary
sources,” [EEE Trans. Signal Process., vol. 59, no. 3, pp. 1037-1047,
Mar. 2011.

[51] R.Bro, “Multi-Way Analysis in the Food Industry: Models, Algorithms
and Applications,” Ph.D., Univ. Amsterdam, Amsterdam, The Nether-
lands, 1998.

[52] H. A. Kiers and A. K. Smilde, “Constrained three-mode factor anal-
ysis as a tool for parameter estimation with second-order instrumental
data,” J. Chemometr., vol. 12, no. 2, pp. 125-147, Dec. 1998.

[53] J. M. F. ten Berge and A. K. Smilde, “Non-triviality and identifica-
tion of a constrained Tucker3 analysis,” J. Chemometr., vol. 16, pp.
609-612, 2002.

[54] A.L.F. de Almeida, G. Favier, and J. C. M. Mota, “Space-time mul-
tiplexing codes: A tensor modeling approach,” in Proc. IEEE SPAWC,
Cannes, France, 2006, pp. 1-5.

[55] A.L.F.de Almeida, G. Favier, and J. C. M. Mota, “Constrained tensor
modeling approach to blind multiple-antenna CDMA schemes,” [EEE
Trans. Signal Process., vol. 56, no. 6, pp. 2417-2428, Jun. 2008.

[56] A.Stegemanand A.L.F.de Almeida, “Uniqueness conditions for con-
strained three-way factor decompositions with linearly dependent load-
ings,” SIAM J. Matrix Anal. Appl., vol. 31, no. 3, pp. 1469-1490, Dec.
2009.

[57] A.M.Kagan, Y. V. Linnik, and C. R. Rao, Characterization Problems
in Mathematical Statistics, Probability and Mathematical Statistics.
New York: Wiley, 1973.

[58] W. Feller, An Introduction to Probability Theory and its Applica-
tions. New York: Wiley, 1966, vol. 1.

[59] A. Stegeman, “On uniqueness of the canonical tensor decomposition
with some form of symmetry,” SIAM J. Matrix Anal. Appl., vol. 32,
no. 2, pp. 561-583, 2011.

[60] H. Curry, “The method of steepest descent for nonlinear minimization
problems,” Quarter. Appl. Math., vol. 2, pp. 258-261, 1944.

[61] A. Franc, “Etude algebrique des multitableaux: Apports de 1’algebre
tensorielle,” Ph.D., Univ. Montpellier II, Montpelier, France, 1992.

[62] G. Tomasi, “Practical and computational aspects in chemometric data
analysis,” Ph.D., The Royal Veterin. Agricult. Univ., Frederiksberg,
Germany, 2006.

André L. F. Almeida (M’08) received the B.Sc. and
M.Sc. degrees in electrical engineering from the Fed-
eral University of Ceara, Brazil, in 2001 and 2003,
respectively, and the double Ph.D. degree in sciences
and teleinformatics engineering from the University
of Nice, Sophia Antipolis, France, and the Federal
University of Ceara, Fortaleza, Brazil, in 2007. He
was awarded M.Sc. and Ph.D. scholarships from the
Brazilian Education Ministry (CAPES), in 2001 and
P 2003, respectively.

He is currently an Assistant Professor with the De-
partment of Teleinformatics Engineering, Federal University of Ceara. In 2002,
he was a Visiting Researcher with Ericsson Research, Stockholm, Sweden. In
2008, he was awarded a CAPES/COFECUB Postdoctoral Fellowship with the
I3S Laboratory, CNRS, France. From 2007 to 2008, he held a one-year research
and teaching position with the University of Nice, Sophia-Antipolis. He cur-
rently holds a productivity Research Fellowship from the Brazilian Council of
Scientific and Technological Development (CNPq). His research interests lie
in the area of signal processing for communications, and includes equalization,
blind identification, source separation, array signal processing, MIMO commu-
nications, tensor decompositions, and multilinear algebra.

Xavier Luciani (M’12) was born in Toulon, France,
in 1979. In 2003, he received both the Engineering
diploma from ISEN Toulon and a Master’s degree
in signal processing from the University of Toulon.
He received the Ph.D. degree in engineering sciences
from the University of Toulon in 2007.

From March 2008 to October 2010, he held two
successive postdoctoral positions with the I3S Lab-
oratory, CNRS and University of Nice Sophia-An-
tipolis, France, and then with the LTSI Laboratory,
INSERM, and University of Rennes 1, France. From
November 2010 to September 2011, he held a one-year research and teaching
position with the University of Nice, Sophia-Antipolis. He currently holds a



DE ALMEIDA et al.: CONFAC DECOMPOSITION APPROACH

postdoctoral position with the PROTEE laboratory, University of Toulon. His
main research interests have been in tensor modeling of fluorescence signals,
blind source separation and blind identification based on tensor approaches,
algorithms for joint diagonalization, and tensor analysis and applications to
chemometrics and telecommunications.

Alwin Stegeman was born in Deventer, The Nether-
lands, in 1975. He received Master’s degrees in
econometrics and in mathematical statistics in 1998
and the Ph.D. degree in mathematics & natural sci-
ences in 2002, all from the University of Groningen
The Netherlands.

Since 2003, he has worked at the Department
of Psychometrics & Statistics at the University
of Groningen, where he currently is an Associate
Professor. His research interests are tensor decom-
positions, independent component analysis, factor
analysis, and stochastic modeling.

5713

Pierre Comon (M’87-SM’95-F’07) received the
Engineer and Master’s degrees in 1982, and the
Doctorate degree in 1985, both from the University
of Grenoble, France. He received the Habilitation
to Lead Researches in 1995, from the University of
Nice, France.

He has been in industry for nearly 13 years, first
with Crouzet-Sextant, Valence, France, between
1982 and 1985, and then with Thomson Marconi,
Sophia-Antipolis, France, between 1988 and 1997.
He spent 1987 with the ISL laboratory, Stanford
University, CA. He joined in 1997 the Eurecom Institute, Sophia-Antipolis, and
left during fall 1998. In 1998, he joined the laboratory 13S, CNRS, Sophia-An-
tipolis, and moved to Gipsa-Lab, Grenoble, in 2012. His research interests
include high-order statistics (HOS), blind deconvolution and equalization,
statistical signal and array processing, tensor decompositions, multi-way factor
analysis, and biomedical end environmental applications.

Dr. Comon was an Associate Editor of the IEEE TRANSACTIONS ON SIGNAL
PROCESSING from 1995 to 1998, and a member of the French National Com-
mittee of Scientific Research from 1995 to 2000. He was the coordinator of
the European Basic Research Working Group on HOS, ATHOS, from 1992 to
1995. Between 1992 and 1998, he was a member of the Technical and Scientific
Council of the Thomson Group. Between 2001 and 2004, he acted as launching
Associate Editor with the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS
I, in the area of Blind Techniques. He has been member of SPTM and SAM
IEEE Technical Committees. He was an Associate Editor of the Elsevier journal
Signal Processing from 2006 to 2011. He is currently Associate Editor of the
SIAM Journal on Matrix Analysis and Applications. He received the Monpetit
prize from the French Academy of Sciences in 2005, and the Individual Tech-
nical Achievement Award from Eurasip in 2006. He is an emeritus member of
the SEE.




